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Evolution of a Velocity-Dependent Quantum Forced 
Anharmonic Oscillator 
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The exact solution to a velocity-dependent quantum forced anharmonic oscillator 
is derived by using integral operators and an iteration method. The study is carried 
out in operational form by use of the creation and annihilation operators of the 
oscillator. The time development of the displacement and momentum operators 
of the anharmonic oscillator is given. These operators are presented as a Laplace 
transform and a subsequent inverse Laplace transform of suitable functionals. 

1. INTRODUCTION 

Anharmonic models play a fundamental role in quantum optics and 
many other branches of physics. A great many papers on approximate 
solutions of the Schr6dinger equation for the anharmonic oscillator are 
available in the literature. Energy levels and eigenfunctions are calculated 
by using the Rayleigh-Schr6dinger perturbation method, the Krylov- 
Bogoliubov method of averaging, or thermodynamic perturbation theory. 
Recently, Carusotto (1988) has studied the single quartic anharmonic 
oscillator and obtained its analytical solution for the first time by applying 
the integral operators and iteration method. 

In our previous work (Zhang et al., 1992) Carusotto's theory and 
method are generalized to treat the time evolution of a quantum forced 
anharmonic oscillator and its exact solution is obtained. In the present 
paper, the study is further generalized to a velocity-dependent quantum 
forced anharmonic oscillator characterized by the Hamiltonian 

f i = !  1 ^ ^e 2 2 r + f ( t ) r  + g(t)~ (1) 2m p +~co mq +-~ 
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where f ( t ) ~  1 is the driven term, g(t)O is the velocity-dependent term, and 
f ( t )  and g(t) are real functions of time. We shall investigate the time 
evolution of the velocity-dependent anharmonic oscillator and give the 
detailed treatment used to analyze the nonlinear problems. First we look 
for the solution of the equation of motion for the displacement operator of 
the oscillator. Then we establish a nonlinear first-order differential equation 
suitably correlated with the equation of motion. A comparison between the 
solution of this differential equation and that of the motion equation 
permits us to condense the resultant power series into an integral of an 
analytical function. After further calculation, we obtain a final expression 
in which the displacement operator appears in the form of a Laplace trans- 
form and a subsequent inverse Laplace transform of suitable functionals. 

2. MATHEMATICAL TREATMENT 

If the characteristic parameters fl, ~, and X are introduced, the Hamil- 
tonian (1) becomes 

f i  = fl~2 ..~ ]?~2 .3f- )~4 + f ( t )~ l  + g(t)~ (2) 

In the Heisenberg picture, the displacement and momentum operators c](t) 
and O(t) of the velocity-dependent anharmonic oscillator obey the equa- 
tions 

d (t) ] 
dt - ih [~' I21] = 2flO + g(t) (3a) 

d~(t)  = _ 2~(2 Z ~2 + 7) - f ( t )  (3b) 
dt 

Consequently, the displacement operator (](t) satisfies the equation of 
motion 

d2~ dg( t) (4) 
dt 2 = b(~t) - 2 f l f ( t )  + d--t- 

with 

b( ~t) = -4 f l~ i (  t)[ 2Z~t2( t) + ~] 

We must solve the nonlinear second-order differential equation (4) so as to 
obtain the time evolution of the operator ~(t). If the iteration method is 
used, the solution of equation (4) may be written as 

r = X( t )  + I2( t )b{~( t )  + i2(t)b{.. .  }) (5) 
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where 

~0 t I(t)  = dr1, 
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X(t) = 4(0) + 2flI(t)~(0) + g(t) 

~Ol~O tl ~t~otl ~0 in-! F( t )  = dt2 d h ,  I~(t) = dt, dt2 . . . dt~ 

K(t)  = F(t)  + ~J(t) 

F(t)  = - 2 f l ~ ( t ) f ( t )  = - 2 f l  ~ f"(0)T" + 2(t) 
n=0 

G(t)  = i( t )g(t)  = ~ gn(O)ln + ~(t) 
/7=0 

c~f c~ng 
f ' ( 0 )  = at" ,=0' g"(0) = ~  ,=0 

We have to find the analytical function to which 
converges. To this end, we consider the series 

B,(z; 4) = 4 +I (Ob{~  + I ( ~ ) b { . . -  }} 

the series (5) 

(6) 

where 4 and z are independent c-number variables. The function B~(z; 4) 
obeys the equation 

~B~ = b { 4  + l (z )b{  }} = b(B~) (7) 
r " ' '  

with the initial condition 

B1(z = 0; 4) = 

Clearly the function B~ (z; 4) can be written as 

B1 (z; 4) = exp[zb(4) d/d4] ~ (8) 

In fact, if we differentiate equation (8) with respect to z, we have 

0z = exp rb(4) b(O (9) 

Since equation (9) can be written as 

0z =exp  zb(4) b(~) .exp -zb(4)  d .1  

the function B~(~; 4) in equation (8) satisfies equation (7), i.e., 

8~ = b  exp zb(r 4 =b(B1) 
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Now we determine the analytical function BI('C , 4). By putting 

d d 

we have 

Khan et a2. 

[~( t)]'f(- )( t; rl) =f( - ) ( t ;  q)[.'~(q)]" 

1 
= - - -  In[ 2X4 2(2Z 4 2 + y) - 1] (10) 

8& 

4 = (y12z)'t2 exp(-4f ly#)  [1 - exp( - 8fly#)] -1/2 (11) 

From equations (8) and (11), we obtain 

Bl (z;#) = exp(z did#) [(7/2X)1/2 exp(-4f ly#)  [1 - exp(-8f l7#)  ] -li2] 

Finally, the function Bl(z; #) can be written in terms of 4 as 

Bl(z; 4) = Y1/24 exp(-4fl~z) {2Z42[1 - exp(-8flyz)] + ~}-1/2 (12) 

where we have used 

exp(k d/d4)f(4) = f ( 4  + k) 

for an arbitrary function f (4)  and dk/d4. 
Then we consider the series 

B2(t; 4) = 4 + 12(t)b{4 +T2( t )b{ . . .  }} (13) 

The function B2(t; 4) is related to the function Bl(z; 4) by 

B2(t; 4) =f<-)(t ;  q)f~+)(~/2; z)B1 (t; 4) (14) 

where the operators f ~+) and f~ - ) a r e  defined as 

1 f(+)0l; z ) z "  - -  n !  rl", f ( - > ( z ;  rl)rl" = - -  z "  
n! 

Comparing equation (5) with equation (13) yields 

= e x p [ X ( t ) ~ 1  B2(t; 4)r (15) 

Substituting equation (14) into equation (15) leads to 

~(t) = exp[X(t) d/d4]f(-)(t; q)f~+)(r/2, z)Bl(z; 3)1,=o (16) 

Therefore the operator ~(t) is expressed in a compact  form. It can be 
proved that 
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where 

X(q) = c](0) + 2flq0(0) + K(q) 
(17) 

o o  

K(q) = ~ [ -2 f l f ' (O)q  +g'(0)]q "+ '  
n = 0  

Then equation (16) becomes 

I](t) = f ( - ) ( t ;  r/)Ef(+)(r/2, z)Bl (~; ~)[r = o (18) 

with 

= exp[X(q) d/d~] (19) 

Introduce the creation and annihilation operators ~+ and t~. which 
obey the commutation relation [~. fi +] = 1 and are related to the displace- 
ment and momentum operators of the oscillator by 

~(0) = a(~ + + ~) = (hZfl/47)1/4(~ + + t~) 

~( 0) = iO(~ + - ~) = i(h27 /4fl)1/4(~ + _ ~) 

Hence equation (17) reduces to 

X(~t) = V(q)a + + V*01)a + K(q) (20) 

with 

V(q) = (a + i20fl~l) 

Substituting equation (20) into equation (19) yields 

= exp{[V(q)~ + + V*(q)~ + K(q)] d/d~} 

By using the Baker-Hausdorff  theorem (Louisell. 1973). we have 

= exp[V(q)~ + d/d~] �9 exp[V*(q)3 d/d~] 

x exp{[�89 V(q)V*(,)] d2/d~2} �9 exp[K(q) d/dr (21) 

Therefore equation (18) becomes 

c](t) = f ( - ) ( t ;  ~t) exp[V(q)fi + d/d~] exp[V*(~t)3 d/dr 

x exp[�89 V(r/) 12 d2/d~ 2] 

x exp[K(q) d/d~] f +)(t/2; ~) BI (~; ~)Ir = o (22) 

The expectation value of the operator ~](t) in the coherent state is given by 

( e l ( t ) )  = ~ - ' / 2 f ( - ) ( t ;  ~)f(+)(~ 2; r) 

x d~- exp(_(2)  BI [T; ~ = X//2 [ V(t/) 1~- 
oo 

+ V(t/)e* + V*(q)e + K(t/)] (23) 
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where we have used 

exp(kd2/d~ 2)f(~) = (4r&) - 1/2 d (  exp[ - (~ - () 2/4k] f ( ( )  

for an arbitrary function and dk/d~ = 0. Equat ion (23) is just the desired 
expression for the time evolution of  the displacement operator  of  the 
velocity-dependent anharmonic oscillator. 

Similarly, the expectation values of  the operator ~(t) in the coherent 
state can be written as 

<~(t) > = n - 1/2(2~) - 'j~-)(t; q)f(~/2; z) 

x d ( e xp (_~ -2 ) / ~  -I{BI[T;  r = N/~ i V(/~)l~- 
oo 

+ V*(q)a + V(~l)~* + K(t/)] 

- BI[z; ~ = x /2  a ( +  (a + a*)a + K(0)]} (24) 

The expectation values of  the operators ~(t) and O(t) in equations (23) 
and (24) can be represented as a Laplace transform and a subsequent 
inverse Laplace transform of  suitable functionals, i.e., 

(~(t) > = ~ -1 /2~ - ' ( t ;  ~/- ')A?(,  -2; z)t/-  171/2 

x d (  exp( - (2) exp( - 4~7~ ) 
oo 

x Z(( ;  t/) {2)~[E((; tl)] 2[ 1 - exp( - 8B~)I + ~ } - 1/~ (25) 

(~(t)  > = g -1/2(2fl) - 1 ~ .  --1(/; /,] -l)~c~(r / -2; ,~)/,] -2~/1/2 

x d~- exp( - (2) [Z((;  t/) exp( - 4flTz) {2X[E(~-; tl)] 2 
oo 

x [1 - e x p ( -  8~7~)] + 7 }-1/2 _ E0((  ) exp( -4~7T ) 

x {2)~[E0(~-)] 2[ 1 - exp( - 8~7z)] + 7 } - 1/2] (26) 

with 

Z((; ,1) = , f2  IV ('7)](+ V*(~)~ + V(~)~* + K(~) 

~-o(~) = , / 5  o ( +  ~(~ + ~*) + K(0) 

)'(+)(,7; z) = Y~(~ - ' ;  z)~ - ' ,  /(-)(z;~) = ~ ( - ) ( z ;  ,I -1)~ 

where A?(~/; z) and ~ - ~ ( z ;  7) are the Laplace and inverse Laplace trans- 
forms. 
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3. CONCLUSIONS 

The Hamiltonian of  the quantum forced anharmonic oscillator with a 
velocity-dependent term is considered, and the time development of  the 
anharmonic oscillator is studied. The equation of  motion for the displace- 
ment and momentum operators of the oscillator are solved by using the 
integral operators and iteration method. The solutions are presented as a 
Laplace transform and a subsequent inverse Laplace transform of  suitable 
functionals of the creation and annihilation operators of  the oscillator. 
These results can be used to analyze the properties of the velocity-depen- 
dent forced anharmonic oscillator and to obtain the physical quantities 
associated with the nonlinear processes in quantum optics without recourse 
to perturbation theory and variational calculus (Saavedra and Buendia, 
1990). The functional integrals and their transforms in the above expres- 
sions can be evaluated by applying the convolution theorem and other 
effective methods. 

R E F E R E N C E S  

Carusotto, S. (1988). Physical Review A, 38, 3249. 
Louisell, W. H. (1973). Quantum Statistical Properties of Radiation, Wiley, New York, p. 137. 
Saavedra, F. A., and Buendia, E. (1990). Physical Review A, 42, 5073. 
Zhang Jialun, Khan, R. D., Ding Sheng, and Shen Wenda (1992). SPIE, 1726, to appear. 


